首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12423篇
  免费   2038篇
  国内免费   1295篇
电工技术   451篇
技术理论   5篇
综合类   1045篇
化学工业   1368篇
金属工艺   1056篇
机械仪表   334篇
建筑科学   864篇
矿业工程   403篇
能源动力   2106篇
轻工业   285篇
水利工程   656篇
石油天然气   1389篇
武器工业   59篇
无线电   1031篇
一般工业技术   1823篇
冶金工业   401篇
原子能技术   71篇
自动化技术   2409篇
  2024年   37篇
  2023年   700篇
  2022年   927篇
  2021年   948篇
  2020年   988篇
  2019年   873篇
  2018年   724篇
  2017年   729篇
  2016年   611篇
  2015年   602篇
  2014年   696篇
  2013年   757篇
  2012年   836篇
  2011年   928篇
  2010年   655篇
  2009年   632篇
  2008年   579篇
  2007年   592篇
  2006年   501篇
  2005年   424篇
  2004年   335篇
  2003年   286篇
  2002年   248篇
  2001年   182篇
  2000年   182篇
  1999年   154篇
  1998年   107篇
  1997年   93篇
  1996年   82篇
  1995年   59篇
  1994年   73篇
  1993年   29篇
  1992年   30篇
  1991年   22篇
  1990年   17篇
  1989年   24篇
  1988年   21篇
  1987年   15篇
  1986年   24篇
  1985年   8篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1970年   2篇
  1959年   2篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
High entropy alloy(HEA) of Fe Co Ni Ti Al and Inconel 718 superalloy were firstly transient liquid phase(TLP) bonded by BNi2 filler due to the diffusion of Si and B in the filler to the base metals. The effects of bonding time on microstructure evolution and mechanical properties of the TLP joints were investigated.Owing to the complete isothermal solidification of the joints bonded for 30 min 120 min at 1100°C,no athermally solidified zones(ASZs) formed by eutectic phases were observed in the welded zone. Thus the TLP joints were only composed by the isothermally solidified zone(ISZ) and two diffusion affected zone(DAZ) adjacent to the dissimilar base metals and the negative effect of the ASZ on joint properties can be avoided. In addition, the increase of the bonding time can also make the Ti B2 borides precipitated in the DAZ near HEA and the brittle borides or carbides in the DAZ near IN718 alloy decrease and reduce the possibility of the stress concentration happened in the joints under loading. Therefore, the highest shear strength(632.1 MPa) of the TLP joints was obtained at 1100°C for 120 min, which was higher than that of the joint bonded for 30 min, 404.2 MPa. Furthermore, the extension of the bonding time made the fracture mechanism of the joint be transformed from the intergranular fracture to the transgranular fracture. However, as the brittle borides in the DAZ near IN718 can not be eliminated completely and refining of grains also happened in such region, all the TLP joints fractured inner the DAZ near IN718 alloy.  相似文献   
62.
To predict the nonlinear stress-strain behavior and the rupture strength of orthotropic ceramic matrix composites (CMCs) under macroscopic plane stress, a concise damage-based mechanical theory including a new constitutive model and two kinds of failure criteria was developed in the framework of continuum damage mechanics (CDM). The damage constitutive model was established using strain partitioning and damage decoupling methods. Meanwhile, the failure criteria were formulated in terms of damage energy release rate (DERR) in order to correlate the failure property of CMCs with damage driving forces, and the maximum DERR criterion and the interactive DERR criterion were suggested simultaneously. For the sake of model evaluation, the theory was applied to a typical CMC with damageable and nonlinear behavior, that is, 2D-C/SiC. The damage evolution law, strain response and rupture strength under incremental cyclic tension along both on-axis and off-axis directions were completely investigated. Comparison between theoretical predictions and experimental data illustrates that the newly developed mechanical theory is potential to give reasonable and accurate results of both stress-strain response and failure property for orthotropic CMCs.  相似文献   
63.
Previous studies indicate that the properties of graphene oxide (GO) can be significantly improved by enhancing its graphitic domain size through thermal diffusion and clustering of functional groups. Remarkably, this transition takes place below the decomposition temperature of the functional groups and thus allows fine tuning of graphitic domains without compromising with the functionality of GO. By studying the transformation of GO under mild thermal treatment, we directly observe this size enhancement of graphitic domains from originally ≤40 nm2 to >200 nm2 through an extensive transmission electron microscopy (TEM) study. Additionally, we confirm the integrity of the functional groups during this process by a comprehensive chemical analysis. A closer look into the process confirms the theoretical predicted relevance for the room temperature stability of GO and the development of the composition of functional groups is explained with reaction pathways from theoretical calculations. We further investigate the influence of enlarged graphitic domains on the hydration behaviour of GO and the catalytic performance of single atom catalysts supported by GO. Additionally, we show that the sheet resistance of GO is reduced by several orders of magnitude during the mild thermal annealing process.  相似文献   
64.
Non-precious metal-based catalysts for oxygen evolution reaction (OER) have been extensively studied, among which the transition metal X-ides (including phosph-ides, sulf-ides, nitr-ides, and carb-ides) materials are emerging as promising candidates to replace the benchmark Ir/Ru-based materials in alkaline media. However, it is controversial whether the metal Xides host the real active sites since these metal Xides are thermodynamically unstable under a harsh OER environment—it has been reported that the initial metal Xides can be electrochemically oxidized and transformed into corresponding oxides and (oxy)hydroxides. Therefore, the metal Xides are argued as “pre-catalysts”; the electrochemically formed oxides and (oxy)hydroxides are believed as the real active moieties for OER. Herein, the recent advances in understanding the transformation behavior of metal Xides during OER are re-looked; importantly, hypotheses are provided to understand why the electrochemically formed oxides and (oxy)hydroxides catalysts derived from metal Xides are superior for OER to the as-prepared metal oxides and (oxy)hydroxides catalysts.  相似文献   
65.
Development of highly efficient and cheap electrocatalysts towards the hydrogen evolution reaction (HER) is of great importance for electrochemical water splitting. Herein, hybrid Cu/NiMo-P nanowires on the copper foam were successfully fabricated via a simple two-step method. The hierarchically structured Cu/NiMo-P exhibits large surface areas and rapid electron transfer ability, leading to enhanced catalytic activity. The as-prepared Cu/NiMo-P electrodes need overpotentials of 34 mV and 130 mV to obtain 10 mA cm?2 for HER in acidic and alkaline solutions, respectively. Density functional theory (DFT) calculations reveal that the Cu/NiMo-P hybrid has a more thermo-neutral hydrogen adsorption free energy and enhanced charge transfer ability as well.  相似文献   
66.
The rational design of highly effective and low-cost catalysts for oxygen evolution reaction (OER) is of prime importance for the development of water splitting. However, the activity of electrocatalysts still needs enhancement to satisfy the practical application. Herein, we report Co nanoparticles grafted on vanadium nitride (VN) surface via in situ phase separation method by nitriding Co2V2O7 precursor. Benefiting the advantages of abundant active sites of Co, high conductivity and corrosion resistance of VN, the Co/VN achieves incredibly high activity and durability for OER with a low overpotential of 320 mV at a current density of 10 mV cm?2 with a small Tafel slope of 50.4 mV dec?1 and long-term stability. In addition, the in situ Raman further reveals the synergistic effect of Co and VN. Significantly, this study may enrich our knowledge and it can be extended to prepare other interconnected framework structures for the development of OER catalysts.  相似文献   
67.
The development of efficient and stable oxygen evolution reaction (OER) catalysts is an ongoing challenge. In order to solve the problem of low oxygen evolution efficiency of the current OER catalysts, a novel material was synthesized by the incorporation of NiFeCr-LDH and MoS2, and its structural and electrochemical properties were also investigated. The introduction of MoS2 improves the electrochemical performance of NiFeCr-LDH. The polarization curve shows that the potential of composite material is only 1.50 V at a current density of 10 mA cm?2, which is far superior to commercial precious metal catalysts. In addition, the stability experiment shows that the composite material has excellent stability, and the current density has little change after 500 cycles. Furthermore, we found that some metal ions, such as Ni, Cr and Mo, exist in the form of high valence on the surface of NiFeCr-LDH@MoS2, which is also conducive to the occurrence of oxygen evolution reaction.  相似文献   
68.
A promising electrocatalyst containing variable percentage of V2O5–TiO2 mixed oxide in graphene oxide support was prepared by embedding the catalyst on Cu substrate through facile electroless Ni–Co–P plating for hydrogen evolution reaction. The solvothermal decomposition method was opted for tuning the crystalline characteristics of prepared material. The optimized mixed oxide was well characterized, active sites centres were identified and explained by X-ray diffraction, high resolution tunnelling electron microscopy, scanning electron microscopy coupled with energy dispersive X-ray and X-ray photon spectroscopy analysis. The structural and electronic characteristics of material was done by fourier transform infrared spectroscopy and the electrochemical behaviour of the prepared material was evaluated by using Tafel plot, electrochemical impedance analysis, linear sweep voltammetry, open circuit analysis and chronoamperometry measurements. The results show the enhanced catalytic activity of Ni–Co–P than pure Ni–P plate, due to synergic effect. Moreover, the prepared mixed oxide incorporated Ni–Co–P plate has a high activity towards HER with low over potential of 101 mV, low Tafel slope of 36 mVdec?1, high exchange current density of 9.90 × 10?2 Acm?2.  相似文献   
69.
Transition metal-based heterostructure materials are considered as promising alternatives to state-of-the-art noble metal-based catalysts toward the oxygen evolution reaction (OER). Herein, for the first time, a simple interface engineering strategy is presented to synthesize efficient electrocatalysts based on a novel CoFe2O4/β-Ni(OH)2 heterogeneous structure for the electrochemical OER. Remarkably, the optimized CoFe2O4/β-Ni(OH)2 electrocatalyst, benefiting from its hierarchical hexagonal heterostructure with strong electronic interaction, enhanced intrinsic activity, and electrochemically active sites, exhibits outstanding OER electrocatalytic performance with a low overpotential of 278 mV to reach a current density of 10 mA cm−2, a small Tafel slope of 67 mV dec−1, and long-standing durability for 30 h. Its exceptional OER performance makes the CoFe2O4/β-Ni(OH)2 heterostructure a prospective candidate for water oxidation in alkaline solution. The proposed interface engineering provides new insights into the fabrication of high-performance electrocatalysts for energy-related applications.  相似文献   
70.
The exploration of efficient catalysts toward hydrogen evolution reaction (HER) is still an urgent task. In this paper, Ni/Mo/Cu/C and Ni/Mo/C electrode were obtained by conventional pulse voltammetry, which acted as cathode in microbial electrolysis cells (MECs). The prepared samples are analyzed using SEM, XRD, XPS and electrochemical analysis techniques. Results indicated that the Ni/Mo/Cu coating has a rough and globular structure and presents high current density, a lower Tafel slope of 23.9 mV/dec than 30 mV/dec of Pt, which exceeds the electrochemical activity of Pt electrode. Its remarkably enhanced electrocatalytic activity is attributed to the high surface area, high conductivity as well as synergistic interaction among Ni, Mo and Cu.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号